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2Centro Nacional de Investigaciones Metalúrgicas, Avda. Gregorio del Amo, No.8, 28040, Madrid, Spain
(*author for correspondence, e-mail: jagonzal@cenim.csic.es)

Received 30 April 2004; accepted in revised form 07 December 2004

Key words: corrosion rate, electrical circuit model, parameter estimation, reinforced concrete, response to current
pulses

Abstract

The selection of an equivalent circuit that faithfully models the steel–concrete interface response to the application
of electrical signals is a fundamental aspect of the electrochemical determination of reinforcement corrosion rate.
Experimental evidence is provided in favour of using a modified Randles circuit in which the corroding interface is
characterised by a parallel combination of a constant phase element and a charge transfer resistance in series with a
Warburg element. An advantage of having an appropriate model of the steel–concrete system is the possibility of
carrying out studies of quality of the information that is extracted from the experimental data. A sensitivity-
algorithm is applied with the object of identification of the conditions in which the system’s response is dominated
by certain parameters or combinations of them.

1. Introduction

Degradation of reinforced concrete structures is a
matter of great practical importance. Problems are
often related to the corrosion of steel reinforcement
bars. In such cases, corrosion rate determinations can
facilitate estimations of the progress of deterioration
and residual lifetime predictions [1–4].
For some time, electrochemical methods have been

used to obtain corrosion rate measurements. In partic-
ular, estimations based on the Stern–Geary equation
have proven to be very useful [5]

icorr ¼ B=Rt; ð1Þ

where B = constant and Rt = charge transfer resis-
tance of the corrosion process.
Several laboratory and field techniques are used with

reinforced concrete specimens and structures to obtain
the value of Rt [6–8]. The greatest errors in its
determination are often due to an erroneous interpre-
tation of the system response to the application of
electrical signals in the time and frequency domains. A
fundamental aspect in the calculation of Rt is the
selection of a model (equivalent electrical circuit) of the
system that faithfully reflects its response [9–11].
The simplified Randles circuit in Figure 1(a) is very

often used to describe the electrochemical system in
reinforced concrete owing to the simplicity of data

analysis [12]. However, the disadvantage is that at times
it diverges excessively from the real response of the
steel–concrete system [11]. A model consisting of a series
of resistor–capacitor pairs, like that in Figure 1(b), fits
this response much better [13–15], though in this case
the high number of parameters can make it difficult to
locate the true value of Rt. Another approach adopted
in some studies [16–18] is to replace the capacitance C in
the Randles model with a constant phase element, CPE
(Figure 1(c)). Unfortunately, the introduction of a CPE
greatly complicates the method of calculating Rt in the
time domain. It is much easier to analyse the system’s
response (and to calculate Rt) in the frequency domain.
However the longer time necessary to make the mea-
surements in this domain, the greater cost of the
experimental equipment and its worse adaptation to
field measurements can make it advisable to operate in
the time domain. More general than the preceding
models, but also mathematically more complex, is that
of Figure 1(d), which includes both CPE and diffusion
effects.
Sagüés et al. [16] and Birbilis et al. [17] have proposed

numerical calculation procedures for analysing the
response in the time domain of the model in Figure 1(c).
For the model in Figure 1(d), the presence of the
diffusion element Zw further complicates the problem of
obtaining the circuit parameters from the potential-time
data. The recent development by Feliu et al. [18] of a
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computational algorithm for fitting the response of the
latter model to the experimental data has provided the
necessary calculation tool to check its capacity to
interpret the behaviour of the steel–concrete system.
The fundamental objective of this work is to provide

experimental evidence in favour of using the circuit in
Figure 1(d) to analyse the time response of the steel–
concrete system to electrical signals. The effect of the
model’s structure on the precision with which their
parameters are determined is also considered.

2. Computation and experimental procedure

The applicability of the circuit in Figure 1(d), which is
henceforth referred to as the Rt/CPE/W circuit, has been
studied with our own data, obtained using the experi-
mental technique reported previously [10–12], and with

data from the literature, which has the advantage of
reflecting a wide variety of experimental situations, thus
allowing the conclusions to be of a more general
character.
In the calculations the effect of the CPE has been

represented by the expression:

ZCPE ¼ 1=Yoð jxÞb; ð2Þ

where ZCPE = impedance of the CPE; Yo and b = con-
stant parameters; x = angular frequency;
and j ¼

ffiffiffiffiffiffiffi

�1
p

:
Since the testing conditions with reinforced concrete

favour a semi-infinite diffusion process [10–12], the
effect of diffusion has been represented by

Zw ¼
ffiffiffi

2
p

r=
ffiffiffiffiffi

jx
p

; ð3Þ

where Zw = Warburg impedance and r = Warburg
coefficient.
The extraction of the parameters of the Rt/CPE/W

circuit from the response curves has been carried out by
means of the algorithm developed in [18], whose
fundamentals are summarised in the Appendix A. The
input data for the calculation programme consists of the
series of experimental potential-time points as well as
the sampling period and the duration and width of the
pulse.
For the experimentation in our laboratory, use was

made of reinforced concrete slabs which embedded steel
reinforcements of 0.8 cm in diameter and 130 cm in
length [11, 12]. A standard 3-electrode set-up was used.
In many of the tests the obtainment of the response to
the current pulses involved the placing of a counter-
electrode of 7 cm in diameter on the concrete surface. In
this case, the small size of the counter-electrode com-
pared with the length of the reinforcement bar led to a
non-uniform distribution of the electric signal.

3. Demonstration of applicability

3.1. Current steps

The work takes into consideration five response curves
of steel in concrete selected from the literature [14, 16,
19], which were obtained using the galvanostatic step
technique. In the original studies these curves were

Table 1. Values of parameters for an optimum fit according to the Rt/CPE/W model

Example Source of experimental data Time elapsed from start of transient/s Rt/W cm2 Y0/F sb)1 cm)2 b r/W cm2 s)0.5

A (Figure 2) Newton and Sykes [14] 2 2.27 · 103 1.64 · 10)5 0.95 201

B (Figure 3) Newton and Sykes [14] 13 1.09 · 105 2.33 · 10)5 0.75 412

C (Figure 4) Sagüés et al. [16] 600 6.74 · 106 3.50 · 10)5 0.76 0

sa = Y0Rt/s
b b r/Rt/s

)0.5

D (Figure 5) Cui and Yan [19] 144 12.9 1.0 0.016

E (Figure 6) Cui and Yan [19] 26 0.34 0.95 0.016

F (Figure 7) Authors’ experiments 11 (for decaying part of curve) 1.05 0.65 0.039
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Fig. 1. Equivalent circuits considered. RW = ohmic resistance,

Rt = charge transfer resistance, C = capacitance, CPE = constant

phase element, Zw = Warburg diffusion.
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analysed with different calculation techniques on the
basis of various models. Now, the same curves are
analysed taking the Rt/CPE/W circuit as the system
model. The goodness of the fit must serve as an
argument in favour of the model’s validity. Evidently
the values of Rt that are obtained must be in consonance
with the behaviour (active or passive) or the reinforce-
ments.
From those potential-time curves a series of points

spaced regularly in time were obtained, which were
entered into the aforementioned calculation programme
[18]. Fitting provided the series of values of the
parameters (Rt, Y0, b and r) shown in Table 1, which
characterise the corroding interface. The RW term was
zero as was to be expected of data that were corrected
for ohmic drop. The quality of the fit can be checked
visually in the graphs in Figures 2–7, where overpoten-
tial is plotted against time. It can be seen that the
calculated curves are superimposed with notable exac-
titude over the experimental values. In no case has the
error in the fit exceeded 1–2%.
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Fig. 2. Computer fit according to the Rt/CPE/W model (full line)

compared with experimental values (circles). The latter taken from

Figure 5 of a paper by Newton and Sykes [14].
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Fig. 3. As in Figure 2 but for experimental values taken from Fig-

ure 7 of a paper by Newton and Sykes [14].
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Fig. 4. As in Figure 2 but for experimental values taken from Fig-

ure 3 of a paper by Sagüés et al. [16].
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Fig. 5. As in Figure 2 but for experimental values taken from Fig-

ure 10 of a paper by Cui and Yan [19].
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Fig. 6. As in Figure 2 but for experimental values taken from Fig-

ure 12 of paper by Cui and Yan [19].
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In Figures 2 and 3 the experimental points have been
extracted from the potential-time curves of a paper by
Newton and Sykes [14] referring to steel reinforcements
in active state (Figure 2) and passive state (Figure 3)
embedded in concrete. Together with these points the
fitted curve by assuming the Rt/CPE/W circuit is shown.
The numerical analysis produced the series of values Rt,
Yo, b and r of examples A and B in Table 1. It is not
possible to establish a direct comparison between these
values and those determined in [14], since the latter were
calculated for an equivalent circuit with three capacitive
components and three resistive components (Figure 1
(b)). Nevertheless, we note that the sum of the three
separate resistive components given in the original study
is equivalent to the value of Rt in Table 1, and that the
sum of the inverse values of the capacitive components,
excluding the component of the smallest magnitude, is
approximately equivalent to 1/Yo.
The experimental points in Figure 4 have been

deduced from a paper by Sagüés et al. [16]. As before,
the calculated curves closely match the experimental
curves. The fit parameters of the Rt/CPE/W circuit
(example C in Table 1) practically coincide with the
values that were obtained in [16] for a circuit such as
that shown in Figure 1(c), in which the diffusion effect is
supposed to be negligible. The magnitude of the value of
Rt is typical of the passive behaviour of the galvanised
steel rebars in concrete that were used in [16].
Finally, the experimental points in Figures 5 and 6, for

passive and active steel reinforcements, respectively, were
extracted from the galvanostatic curves of a paper by Cui
andYan [19] (examples D and E in Table 1). Here too the
response of the Rt/CPE/W circuit is fitted quite satisfac-
torily to the shape of these curves. Since the cited work
does not mention the exact magnitude of the current step
applied, it is not possible to refer the values of Rt and Yo

to the unit of reinforcement surface area; instead the
value of the apparent time constant sa= YoRt has been
calculated, which is independent of the surface area.
These values (Table 1) agree reasonably well with the

values of sa that are deduced from the values ofRt andYo

in [19]. They also concord with the typical values for
passive reinforcements in a chloride-free concrete and
active rebars in a concrete with chlorides.

3.2. Galvanostatic pulses

In addition to current steps, the application of current
pulses of a finite duration [11, 12] is habitual practice in
laboratory tests and on site measurements aimed at
obtaining information on the corrosion rate of rein-
forcements in concrete. Figure 7 shows one of the
transients thus obtained in our laboratory. The repre-
sentation log g vs t, being g = overpotential and
t = time after current interruption, shows a clear non-
exponential behaviour for the decaying part of the curve
(Figure 8); instead of the theoretical straight line from
the simplified Randles circuit, a curved line appears
whose slope depends on the point of the curve that is
selected, for instance, after 0.5 s the slope is some two
times greater than after 2 s, and some six times greater
than after 10 s. However, this behaviour is perfectly
compatible with a system represented by the Rt/CPE/W
circuit, as is confirmed in Figure 7, where the curve
calculated for the response of this circuit is fitted with
little error to the experimental points along the decaying
part of the curve. Since the area of the reinforcements
affected by the electric current injected from a counter-
electrode of a much smaller size than the reinforcements
is not known, the calculated parameters cannot be
referred to the unit of surface area, though they allow
the value of sa to be calculated (example F in Table 1).
This value is in agreement with the state of corrosive
activity foreseeable for a steel embedded in concrete
with 3% chloride as in the case of the example.

4. Use of the model

As has been seen in the above examples, it is possible to
quite satisfactorily fit the Rt/CPE/W circuit to the
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Fig. 8. Decay curve measured on corroding steel in concrete. Plot of

log (overpotential) vs time.
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experimental points and to deduce from it Rt values that
concord with the corrosion status of the tested speci-
mens. Unfortunately, the interest that may exist in using
the Rt/CPE/W circuit in the analysis of data is con-
fronted by the complexity of the mathematical treat-
ment, which is much greater than with the simplified
Randles circuit traditionally used to represent the
behaviour of the steel–concrete interface.
This problem ismore serious in the time domain than in

the frequency domain, since some of the impedance data
analysis programmes existing in the literature may be
used in the latter domain [20–23]. In contrast, in the time
domain the traditional methods for analysing transients
are not exactly applicable to the Rt/CPE/W circuit due to
the effect of the CPE. The frequency with which the
exponent b of the CPE takes values quite lower than unity
emphasises the role of this element in the analysis of data.
The methods proposed by Sagüés et al. [16] and Birbilis
et al. [17] of direct analysis of the response in the time
domain may be useful, provided that the coefficient r for
the diffusion is negligible compared with the value of Rt.
Of a more general applicability are, in principle, the
methods based on the Laplace and Fourier transforma-
tions of transient data from the time domain into the
frequency domain, as described byGlass [24] and Cui and
Yan [19], and the direct method of Feliu et al. [18].
Although calculation procedures for analysing the

data obtained in the time domain are not therefore
lacking, the treatments are without doubt improvable in
many aspects, such as the exactitude of the estimations,
adaptability to different situations, computational effi-
ciency, etc. There is special practical interest in cutting
the time for performing the calculations, in such a way
that the results are quickly and easily obtained by
today’s computerised equipment. It is undoubtedly
justified to continue to dedicate efforts to these ques-
tions.

5. Accuracy achievable in the determinations

It is underlined that one of the advantages of having an
appropriate model of the steel–concrete system is the
possibility of carrying out studies of the quality of the
information that is extracted from the experimental
data. The question of the precision achievable in the
determinations of the model’s parameters always arouse
the maximum attention. In our case, this interest refers
mainly to the parameters that are related with the
corrosion rate, such as the values of Rt and the
(apparent) time constant of the corrosion process, i.e.
the Rt. Yo product.
In general, the precision with which the parameters of

a model may be determined from the response to an
electric signal depends on many factors, such as the
suitability of the model to the system under study (errors
due to an incorrect model), quality of the experimental
data (systematic errors, noise levels, etc.), amount of
information analysed (e.g. pulse duration and sampling

time), suitability of calculation method to the model
used and to the type of signal applied. Even in the event
that all of these errors were minimal, the model’s very
structure represents an additional source of imprecision.
We believe that it is of interest to refer to this aspect in
the paper for the special case of the Rt/CPE/W model
chosen to simulate the steel–concrete system.
The influence of a given parameter in the overall

response of a model depends on the relative importance
that it has in relation to the other parameters that
together define the model. The less sensitive the model’s
response to a particular parameter, the more imprecise,
in principle, its determination will be. The signal/
response transfer function allows information to be
obtained on the individual and combined effect of a
model’s parameters. The transfer function G (s) for the
steel–concrete interface according to model Rt/CPE/W
is deduced from Equation (A.2) given in the Appendix.
Replacing jx by the Laplace variable s and omitting the
term RW we obtain:

GðsÞ ¼ x1ðs0:5 þ x3Þ
ðs0:5 þ x3Þðsb þ x2Þ � x2x3

ð4Þ

in which the variables x1, x2, and x3 are combinations of
the parameters R1, Yo, and r:

x1 ¼ 1=Yo; ð5Þ

x2 ¼ 1=YoRt; ð6Þ

x3 ¼
ffiffiffi

2
p

r=Rt: ð7Þ

The transfer function (Equation 4) can give rise to
simpler mathematical relations when x2 and x3 take

CPE 
(Y0,β ) 

Z
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Fig. 9. Participation of parameters Yo, b, R and r in the system’s

response for extreme cases.
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certain values. In these circumstances the influence of
some model’s parameters on the response is negligible,
which means that they cannot be reliably estimated from
the analysis of the data recorded at the system’s entry
and exit. Therefore, it is of interest to characterise these
cases. The first one, in which simplifications of Equation
4 occur, is when the product x2 x3 fi 0, and Equation 4
reduces to equation:

Ĝ sð Þ ¼ x1
sb þ x2

: ð8Þ

This equation coincides with the transfer function of
model II in Figure 9 which is a simplification of model I.
Thus, for sufficiently small values of the product x2x3 the
responses of the models I and II practically coincide. In
this case the simplification of using model II, which does
not contemplate the diffusion effect and whose mathe-
matical treatment is much simpler, would be justified to
extract information on the steel–concrete interface.
A second special case is when x2 fi 0, and Equation

4 reduces to

Ĝ sð Þ ¼ x1
sb

ð9Þ

which coincides with the transfer function of model III
in Figure 9. In this case the responses of models I and
III will be practically equal, and the simplification of
using model III instead of model I would be justified.
There is a third case which is when x3 fi ¥. Then
s0.5 + x3 � x3 and replacing in (4) we again reach
Equation 9.
The three aforementioned cases represent asymp-

totic behaviours. To define the regions in the x2 ) x3
plane in which the above models are good approxi-
mations of the general model (Equation 4), use will be
made of a technique that is very well known in the
field of the modelling and identification of systems
[25], which is based on the comparison of the
frequency response of the general model with the
responses of its simplifications. According to this
technique, the degree of similarity between two
transfer functions G(s) and Ĝ(s) may be quantified
according to the expression:

J ¼ 1

2p

Z 1

�1
G jxð Þ � Ĝ jxð Þ
� �

G jxð Þ � Ĝ jxð Þ
� �*

dx;

ð10Þ

where * denotes conjugate complex. If the value of this
integral is smaller than a bound value e (to be defined)
then it can be assured that G and Ĝ present similar
dynamics. It should be mentioned that this integral has
also an interpretation in the time domain, since accord-
ing to Parseval theorem [26]:

J ¼
Z 1

0

e2ðtÞdt;

where e(t) is the difference between the responses of the
systems G and Ĝ to a Dirac type pulse input [27].

An alternative function to Equation 10 to quantify the
degree of similitude between transfer functions is Equa-
tion 11:

J ¼ 1

2p

Z 1

�1

GðjxÞ � ĜðjxÞ
GðjxÞ

" #

GðjxÞ � ĜðjxÞ
GðjxÞ

" #*

dxe;

ð11Þ

where now the relative difference between transfer
functions in the frequency domain is measured.
The bound e has been selected after several simula-

tions of frequency responses and depending on the
desired degree of approximation. To define the afore-
mentioned regions on the x2–x3 plane (Figures 10–12) a
value of e = 0.01 has been selected in this work. This
value is extremely conservative, and if two transfer
functions, as G(s) in Equation 4 and Ĝ(s) in Equation 8
or 9, satisfy the inequality (11) they may be considered
to be equivalent transfer functions for the purposes of
this discussion.

Fig. 10. Sensitivity boundary between the region of mandatory use

of model I and region of possible replacement by model II.

Fig. 11. Ln x2/In x3 diagram showing the position of the points cal-

culated from the experimental results.
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Similarity regions have been obtained for b values
between 0.55 and 0.95, with b varying in 0.05 steps. In
these cases it has been possible to calculate the integral
of Equation 11 analytically, giving rise to two families of
curves: one for approach given by Equation 8 and
another for approach given by Equation 9. The regions
have been defined in a conservative way like the
respective enveloping lines of these two families of
curves.
The boundary corresponding to approach in Equa-

tion 8 is shown in Figure 10. This boundary separates
the model I compliance region (upper right) (i.e. when
there is an important diffusion effect) from the model II
compliance region, in which diffusion does not inter-
vene. In general, the smaller the value of
r=Rt ¼ ðx3=

ffiffiffi

2
p
Þ, the easier the response will be situated

in the region of insensitivity to r, in which, the
estimations of r are unsure.
It is illustrative to apply the above criteria to steel

reinforcements for situations representative of the states
of active corrosion and of passivity, with typical values
of sa (=YoRt) of 1 sb for active steel and of 50 sb for
passive steel. If sa = 1 sb (i.e., ln x2 = 0), the sensitivity
boundary in the diagram of Figure 10 is situated at ln
x3 = )2.2, i.e. r/Rt = 0.078 s)0.5. Thus, whenever the
r/Rt ratio is below this value it will not be possible to
reliably calculate the value of r. On the other hand, if
sa = 50 sb (i.e., ln x2=)3.9), this diagram predicts a
response that is practically independent of the diffusion
for any value of the r/Rt ratio, and therefore the
impossibility in general of making also reliable estima-
tions of r.
The results obtained by the authors over some 5 years

of experimentation with reinforced concrete beams and
slabs [10–12, 18] seem to corroborate, in most instances,
the idea of a minor effect of diffusion in the steel–
concrete system’s response. The corrosion parameters
which were extracted from the potential-time transients
by means of the program in [18] permitted to calculate
the coordinates ln x2 and ln x3 that determine the
position of the points inserted in the diagram in
Figure 11. It is important to observe that most of these
points (close to 75%) are situated in the region of a
possible use of model II, in which diffusion practically
does not affect the system’s response. It would not
therefore be surprising if the simplification of replacing
model I with model II were often valid in laboratory and
field measurements. In this case, the calculation methods
that ignore the diffusion effect, as those of Sagüés et al.
[16] and Birbilis et al. [17], would be perfectly justified.
When the impedance of the branch that includes Rt

and Zw is much greater than that of the branch formed
by the CPE in model I in Figure 9, the circuit’s response
would basically be due to the sole action of the CPE, as in
model III in Figure 9. In these circumstances it is useless
to hope to achieve reliable estimations of r or of Rt.
Figure 12 plots together the sensitivity boundaries

between models I, II and III. The field of the general
diagram is now divided into four regions: region A, in

which it is necessary to use model I in the numeric
analysis; region B, in which the replacement of model I
by model II is justified within a 1% error; region C,
where the replacement of model I by model II or by
model III is justified within a 1% error; and region D,
where the replacement of model I by model III is
justified within a 1% error. In region A, the model’s
response is ‘‘sensitive’’ to all the parameters in model I,
which could be calculated with an estimable degree of
reliability. In region B, the model’s response continues
to be sensitive to the parameters Yo, b and Rt, but
hardly to r, for which reason the latter cannot be
determined with security. In regions C and D only the
parameters Yo and b seem to significantly influence the
model’s response, and a precise estimation of Rt and r is
not possible. Naturally, it would be appropriate to bear
in mind all of these limitations when extracting infor-
mation on the steel–concrete system modelled by the
Rt/CPE/W circuit.

6. Conclusions

Experimental evidence is shown in favour of using a
modified Randles circuit characterised by a parallel
combination of a constant phase element and a charge
transfer resistance in series with a Warburg element to
model the steel–concrete interface. The availability of
the appropiate computational algorithm for fitting the
response of this circuit to the experimental data has
enabled us to check the suitability of the given model to
interpret the corroding behaviour of steel reinforce-
ments. In this respect, it is shown that the charge
transfer parameter of the said model gives reliable
information on the steel corrosion rate.
The effect of the model structure on the precision with

which model parameters can be determined has been
also considered. Information on the individual and
combined effect of the model parameters is derived from
consideration of the signal/response transfer function.

Fig. 12. Representation of conditions (values x2 and x3) in which the

replacement of model I by models II and III is justified.
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On the basis of this treatment, diagrams have been
constructed indicating in which circumstances some
parameters, or combinations of them, will have a
predominant or negligible effect on the model response
and therefore they will be precisely determined or not. In
particular, the idea of a minor effect of diffusion in the
system response seems to be valid for most measure-
ments of steel corrosion in concrete.

Appendix A

Calculation of the parameters of the Rt/CPE/W circuit
from the response to a galvanostatic pulse

The impedance of the Rt/CPE/W circuit (Figure 1(d))
used to represent the steel–concrete system is given by
the equation:

u xð Þ
i xð Þ ¼Z jxð Þ¼RXþ

Rt jxð Þ0:5þr
ffiffiffi

2
p

Y0 jxð Þb Rt jxð Þ0:5þr
ffiffiffi

2
ph i

þ jxð Þ0:5
;

ðA:1Þ

where (ix) = current that enters the circuit and
u(x) = voltage across it; RW = ohmic resistance of
the circuit; and Rt,r,Yo have been defined previously [18].
This expression can be rearranged as

ZðjxÞ ¼ RX þ
x1 ðjxÞ0:5 þ x3

h i

ðjxÞ0:5 þ x3

h i

ðjxÞb þ x2

h i

� x2x3
;

ðA:2Þ

where x1, x2, and x3 have also been defined previously.
The system response to a galvanostatic pulse is

obtained from the inverse Laplace transform of the
product of the transfer function (which is obtained from
(A.2) by replacing jx with the Laplace variable s) and
the Laplace transforms of the input signal, which is:

I sð Þ ¼ I0
1� e�Ls

s
; ðA:3Þ

where Io is the amplitude of the pulse and L is its width.
The calculation of the inverse Laplace transform of the
product is very complicated because of the fractional
terms, whose inverse Laplace transform are summation
of series of infinite terms. The solution has been
based on a discretised approximation of the differential
operator [18].
A search procedure has been implemented in the

analysis program which minimises the least squared
error D between the simulated voltage u¢k and the
measured data uk:

D b; x1; x2; x3;Rsð Þ ¼
X

N�1

k¼0
uk � u0k
� �2

; ðA:4Þ

where N is the number of voltage measurements. Once
the values of b, x1, x2, x3, and Rs have been obtained the
calculation of Yo, Rt and r is immediate.
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